40 research outputs found

    Ghost imaging with engineered quantum states by Hong-Ou-Mandel interference

    Get PDF
    Traditional ghost imaging experiments exploit position correlations between correlated states of light. These correlations occur directly in spontaneous parametric down-conversion (SPDC), and in such a scenario, the two-photon state used for ghost imaging is symmetric. Here we perform ghost imaging using an anti-symmetric state, engineering the two-photon state symmetry by means of Hong-Ou-Mandel interference. We use both symmetric and anti-symmetric states and show that the ghost imaging setup configuration results in object-image rotations depending on the state selected. Further, the object and imaging arms employ spatial light modulators for the all-digital control of the projections, being able to dynamically change the measuring technique and the spatial properties of the states under study. Finally, we provide a detailed theory that explains the reported observations.Comment: Published version. 19 pages, 5 figure

    Optical sectioning in induced coherence tomography with frequency-entangled photons

    Get PDF
    We demonstrate a different scheme to perform optical sectioning of a sample based on the concept of induced coherence [Zou et al., Phys. Rev. Lett. 67, 318 (1991)]. This can be viewed as a different type of optical coherence tomography scheme where the varying reflectivity of the sample along the direction of propagation of an optical beam translates into changes of the degree of first-order coherence between two beams. As a practical advantage the scheme allows probing the sample with one wavelength and measuring photons with another wavelength. In a bio-imaging scenario, this would result in a deeper penetration into the sample because of probing with longer wavelengths, while still using the optimum wavelength for detection. The scheme proposed here could achieve submicron axial resolution by making use of nonlinear parametric sources with broad spectral bandwidth emission.Comment: Published version. 11 pages, 9 figure

    Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states

    Get PDF
    Using spatial modes for quantum key distribution (QKD) has become highly topical due to their infinite dimensionality, promising high information capacity per photon. However, spatial distortions reduce the feasible secret key rates and compromise the security of a quantum channel. In an extreme form such a distortion might be a physical obstacle, impeding line-of-sight for free-space channels. Here, by controlling the radial degree of freedom of a photon's spatial mode, we are able to demonstrate hybrid high-dimensional QKD through obstacles with self-reconstructing single photons. We construct high-dimensional mutually unbiased bases using spin-orbit hybrid states that are radially modulated with a non-diffracting Bessel-Gaussian (BG) profile, and show secure transmission through partially obstructed quantum links. Using a prepare-measure protocol we report higher quantum state self-reconstruction and information retention for the non-diffracting BG modes as compared to Laguerre-Gaussian modes, obtaining a quantum bit error rate (QBER) that is up to 3 times lower. This work highlights the importance of controlling the radial mode of single photons in quantum information processing and communication as well as the advantages of QKD with hybrid states.Comment: Published version, 15 pages, 6 figures, 2 table

    Spatial mode detection by frequency upconversion

    Get PDF
    The efficient creation and detection of spatial modes of light has become topical of late, driven by the need to increase photon-bit-rates in classical and quantum communications. Such mode creation/detection is traditionally achieved with tools based on linear optics. Here we put forward a new spatial mode detection technique based on the nonlinear optical process of sum-frequency generation. We outline the concept theoretically and demonstrate it experimentally with intense laser beams carrying orbital angular momentum and Hermite-Gaussian modes. Finally, we show that the method can be used to transfer an image from the infrared band to the visible, which implies the efficient conversion of many spatial modes.Comment: Published version, 4 pages, 5 figure

    Complementarity relationship between first-order coherence and path distinguishability in an interferometer based on induced coherence

    Full text link
    We consider an interferometer based on the concept of induced coherence, where two signal photons that originate in different second-order nonlinear crystals can interfere. We derive a complementarity relationship that links the first-order coherence between the two interfering signal photons with a parameter that quantifies the distinguishing information regarding the nonlinear crystal where they originated. Astonishingly, the derived relationship goes beyond the single-photon regime and is valid for any photon flux rate generated. We show experimental results in the low photon-flux regime that confirm the validity of the derived complementarity relationship.Comment: 6 pages, 6 figure

    Enhancing the modal purity of orbital angular momentum photons

    Get PDF
    Orbital angular momentum (OAM) beams with topological charge ℓ are commonly generated and detected by modulating an incoming field with an azimuthal phase profile of the form exp(iℓϕ) by a variety of approaches. This results in unwanted radial modes and reduced power in the desired OAM mode. Here, we show how to enhance the modal purity in the creation and detection of classical OAM beams and in the quantum detection of OAM photons. Classically, we combine holographic and metasurface control to produce high purity OAM modes and show how to detect them with high efficiency, extending the demonstration to the quantum realm with spatial light modulators. We demonstrate ultra-high purity OAM modes in orders as high as ℓ = 100 and a doubling of dimensionality in the quantum OAM spectrum from a spontaneous parametric downconversion source. Our work offers a simple route to increase the channel capacity in classical and quantum communication using OAM modes as a basis
    corecore